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The methods of Shvets [1] and of integral relations [2,3] have been
used to solve the problems of ignition and self-ignition of nonvolatile
reacting substances, for boundary conditions of the fourth kind.

Consider ignition of a semi-infinite reacting volume
of heated medium with outside thermophysical contacts
under conditions of perfect thermal contact. According
to [4], boundary conditions of the fourth kind are re-
alized for unsteady heat transfer between a solid and a
gas or liquid., We shall assume that a reaction of zero
order takes place, and that all the thermophysical co-
efficients are constant. Our problem will be to deter-
mine the ignition characteristics. Mathematically the
problem reduces to solution of the following system of
equations:
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Inderiving Eq. (1) we made use of the Frank-Kamenets-
kii transformation [5] for exp(—E/RT). Equation (1),
in accordance with Eq. (6), is a satisfactory descrip-
tion of ignition of condensed reacting substances, even
for a reaction of zero order, if (Ty — Tjpip)eip1/q << 1.
From the solution of the boundary problem of Egs. (1)
(1)—-(8), as a special case, we obtain, when n — «, the
solution of the problem examined in [7, 8].

In practice, because the chemical reaction rate is
an exponential function of temperature, a temperature
variation takes place in the viecinity of the interface
between the media. It is, appropriate, therefore, to
introduce the thermal boundary layer thickness A;(7)
and Ay(t). Then the boundary condition at +, and the
conditions when 7 = 0, take the form

0y (A4, T) = — 9init, 8, (— A,, 1) =0,
A (0) = A, (0) = 0. (4)
Following Shvets [1], in first approximation we obtain

for 6 and 0;,
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Substituting Eq. (6) into the right-hand sides of Egs.
(1) and (2), and integrating the results of the substitu-
tion twice with respect to x and £, we find the second
approximations:
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ax® bix®  exp(by + aw)

= 6 -+ ) 1112 + Awx + By, (6)
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The quantities A;, Ay, By, and B, are determined
from the boundary conditions (3) and (4). Satisfying
(6) and (7) by the Shvets conditions [1],
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we obtain two ordinary nonlinear differential equations
to determine the quantities A; and A,:
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If the nonreacting heated medium exhibits a very great
heat capacity, the temperature at the boundary between
the media remains constant as n — <, In this case,
instead of the system of equations (9) and (10), we have
only one equation remaining, and it may be integrated,
taking account of the initial conditions (4), to obtain

Ay == Binit X
% ‘/ Ginit exp 6(1—e —3—seini_:)_‘r . 1 =
1—&—ebiny Binit
— 3t
~V6t 1+2§‘). (11)
init.

In the general case we solve system (9) and (10) by
expanding in series:
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Substituting Eq. (12) into Egs. (9) and (10), and equat-
ing to zero terms with identical powers of T, we obtain
a system of two nonlinear equations for determining

o4 and @, and we obtain systems of linear equations
for determining B, and 8; and 6, and 6,. From solution
of these equations we find that oy =ay =V6, 1 =B = 0,
and, finally,

24(1 + ny(v —e)py
anefnnt '
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When n — =, the first expression in Eq. (12}, tak-
ing account of the values of ¢4, B;, and é; found, coin-
cides with Eq. (11) to an accuracy including terms
containing 7!, where j > 3/2. The first terms in Eqgs.
(12) represent the role of the boundary layers for non-
reacting media. It follows from (6), (7), (11), (12),
and (13), that the heat of reaction, for 6,;; > 1 and
moderate values of T, depends only slightly on the
temperature profile and the thickness of the boundary
layers. Since Gandin [9] has shown that the sequence
of approximations in the Shvets method converges rap-
idly when solving problems of heat conduction for non-
reacting media, and since the perturbation from the
heat of reaction is small, higher approximations con-
verge, at least for moderate values of 7. In particular,
we find, for small values of 7, from Eq. (6), with the
help of Eq. (12), that the temperature at the interface
between the media is —Gmit/(l + n), i.e., it coincides
with the corresponding exact value of the temperature
of the interface between nonreacting media [10], while
the error in the temperature gradient at x = 0 does not
exceed 8%.

Using the condition ﬁ‘—‘
X {x=0
{11], we obtain an equation for the warm-up tfime of the

reacting system:
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5, = (13)

= 0, given by Zel'dovich
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Substituting (12) into Eq. (14), and solving the equation
with respect to 7, we find an approximate expression
for the warm-up time:

- rﬂe%nit
T EAF R —e) {15)

In deriving Eq. (15),
parison with o4 and 0.

1t is easy to see from Eq. (15) that when n — «, the
quantity 74— 9%nit/ 4, and when n — 0, the quantity
Fx— 0, i.e., Tx1s a nonmonotonic function of n,
and attains a maximum Ty = T#,, for n = nx The larger
is 8init, the sharper and the higher is the maximum
value Ty, and the closer is nxto 0. For §pjt > 1, the

we neglected 6; and 6; in com-
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quantity n«® 1/(8ipit — 2). Inthelimit, as f1p5t — 0, we
obtain nx— 0 and Tx— «. The nonmonotonic nature of
Txas a function of n is due, evidently, to a specific
peculiarity of the Arrhenius function, namely, that the
heatliberated from the reactiondoes not go to zeroeven
at sufficiently high temperatures. This defect in the
Arrhenius function was noticed in [12], and the method
of sections was used to avoid it in [12]. We shall avoid
this defect by means of the method of Spalding [13] and

Rosen [14], putting
k
exp_E,%C(T ﬂmt)’
RT T _Y;mt
C = const, k& ==const$ 1. (16)

In an analogous manner, for a heat evolution in the
form of Eq. (16), we obtain the warm-up time of the
reacting system in the form

kel
e =R YT an
2 n

\

In this case, with increase of n, the warm-up time mono~
tonically decreases from < atn =y to Tyx= (k+1)/2
at n — e,
For the limiting case n — %, we can find a value
of warm-up time that is exact within the framework
of the approximation of the Shvets method [1}:

5, = 6ianit 2emlt(1 *'8)
PRI T 90,38
lmt 361mt _31_
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Comparing Eq. (18) with the expression for 14 found
in [6] using an electronic computer, we see that its
accuracy is quite satisfactory. Thus, for 6+ =5,

10, 15, 20, 25, 30, with the help of Eg. (18), we have
T+= 7.3, 27, 59, 104, 161, 231, and from [6] we have
T = 10, 30, 60, 100, 150, 210, respectively.

To estimate the accuracy of Eq. (15) for moderate
values of n we found Ty for n=1from Eq. (14) by a
trial-and-error method. We found 7 = 28.8 for G, =
=5, T4 = 957 for 6pjt = 10, and 74 = 24.7 exp 10 for
Binit = 20, while from Eq. (15) we have 7, = 20.7, 934,
25 exp 10, correspondingly. Therfore, the accuracy of
Eq. (15) is quite satisfactory within the framework of
our approximations.

Knowing T4 we can easily find the thickness of the

heated layer,
nemlt 1
e 2(v Tv—gl e, 19

the temperature of the interface boundary for T = T,
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and the amount of heat transferred by the hot medium,
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Using Eq. (20), with n =1 and 6,;; =5and 10, we find
that 64 = -1.6and—2.6, respectively, i.e., in contrast
to heat transfer between nonreacting media, the inter-
face temperature in our case increases with increase
of 7.

If n decreases from « to 0, it follows from Eq. (21)
that Q first increases then decreases to 0. Therefore,
there is a maximum value @, for n = n;,. The right-
hand branch of the Q, curve, corresponding to n > nyx,
has physical meaning. Thus, for n > ny4, to ignite the
reagent it is necessary to transfer a greater amount
of heat from the hot medium than when n — «. This is
because the heat evolved in the reaction decreases
exponentially with decrease of n.

For n — = we obtain formulas from Egs. (15) and
(21) which are close to the warm-up time and to the
quantity Q, as found in [6, 8], using a computer.

Thus, a comparison of the limiting cases with the
results of machine calculation indicates that the Shvets
method [1] converges in our case, at least for 0 < 7 =<
= T

For n — 0, in place of Eqs. (19), (20), and (21), we
should use formulas which can be obtained in an anal-
ogous manner, making use of (16) and (17).

It was shown in [15] that the ignition time can be
divided into a warm-up time 7 N and an induction time
Tg. To determine the induction time, we must solve
the corresponding problem of self-ignition of a react~
ing substance, which reduces to solution of the system
of equations

a8, 1 3 y 08
ik Syt dy oy

1 ) + exp 6, (22)

o0 (00 23
ot 8yt Oy 0y
with boundary and initial conditions
_& :Ov el(T’ 1):‘92(1’, 1),
0y |y=o
28, | o0, |
oy 1 ;yzt
6,00, y)=10,(0, y) =0. (24)

System (22), (23) with conditions (24) has been solved
for i = 2 using a computer [16]. We shall use the method
of integral relations to solve it. We first examine the
thermal detonation of a reacting sheet. We use the
"independent” approximation of nonlinear theory (in
the terminology of [3]) assuming that

81= (g —80) y* + 6,
exp 0 == exp 0, 1+ (exp g — exp 0,) y2 (25)

For the second equation of system (22) and (23) we
make the substitution z =y — 1. Then, for 1=y < «,
we can use the known solution [10] of the heat conduc-
tion equation for a half-space with known thermal flux
at its boundary. Using this solution, together with the
second and third of conditions (24), we obtain an equa~
tion for 6 and g:
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9 [ a0—el)
g_nmj 120 g (26)

We obtain a second equation for g and 6 by substituting
Eq. (25) into Eq. (22) and integrating the result with
respect to y from 0 to 1:

26, + g = 2exp 6, + expg—&‘g—_—gl.' (27)

Therefore, to determine g and 6 we have the system
(26), (27) with conditions

8,(0) =0, g(0)=0. (28)

Equation (26) is an Abel equation [17]. Using the trans-
formation formula for this equation [16], we obtain

n 5 d ( gdt
8, = —l/ ———5 . (29)
v =81 5 n d'co V1—t

Knowing Eq. (29), we can easily reduce the system
(26), (27) to a single equation:

=5 5 {eXP g+
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n § d [ gat
”exp[“ V= ) e
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Von J Vit
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When n — 0, we have 6 — g from Eq. (29), i
the spatial nonuniformities in the temperature distri-
bution vanish, and we obtain the Semenov-Todes case
[18], when there is no heat transmission from the re-
acting substance. In this case, Eq. (27) can be inte~
grated, and we have

8= g = —In(l —1). (31)

From Eq. (31) we obtain the result that the induction
time for n = 0 is equal to 1, in agreement with [18].

If n — «, we have the limiting case of Frank-Kamen-
etskii [6]. In this case, as can be seen from Eq. (26),
g =0, and instead of system (26) and (27), we are left
with a single equation which can easily be integrated,
and for 6 — « we obtain

(32)

b |
J 8 l—}—ZexpG)—-BB
1]

It is easy to see that Ty < = and therefore, self-ignition
oceurs for & > 6% =0.94, the exact value being 64 = 0.88
[6]. For é < 04 there are two steady temperature dis-
tributions. The limiting steady value is 6 = 0p% = 1.16.
Thus, for n — « there is a steady temperature dis-
tribution and a definite limit, while for n — 0, these
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do not exist. The gquestion arises as to what occurs

at intermediate values. A complete answer to this
question can be given by solving Eq. (30), which is a
difficult problem, but some indirect data can be ob-
tained without solving Eq. (30). We shall replace
exp O, by linEq. (22), and applya Laplace transformation
[19]for the linear system obtained with conditions (24).
For the transform of 6;, where 0, is the solution of
system (22) and (23) with a source equal to 1, we find
the expression

1 nch)/ &sx )
nE g (1 sh V&8s +nchVés /- 3

QOur problem is to study the behavior of 6, for 7 —
— %, To do this, accordingto [19], it is sufficient to
find the limit of svy as s — 0. It is easy to see that
limso; = o and that, therefore, lim6, = «», i.e., even

50 T

for a weak source of heat emission, there is no steady
temperature distribution when 7 — «, In view of the
fact that § > 6;, one of two cases is possible: lim 8, =

T+
lim6; =o. Therefore, there is no steady

T~1o
temperature distribution for the nonlinear heat source

exp ;. This investigation does not resolve the question
of the existence of a detonation limit within the frame-
work of the Frank-Kamenetskii approximation [5] for
exp(—E/RT), since it is possible to have a value of 5*,
such that for 6 > 04 the limit of 6,{0,7) when 7 — 15 is
equal to «. If a detonation limit exists, it depends on
n.

= Or

For a reacting cylinder, by means of a similar in-
vestigation, it is possible to show that again there is
no steady temperature distribution.

For a reacting sphere, using the substitution ¢ =
=0,y and similar methods, a single integrodifferential
equation for g can be obtained. It is easy to verify that
for a source equal to 1, a steady temperature distri-
bution does exist here. Since the Arrhenius function
exp(—E/RT) < 1 for any T, this conclusion is valid
for any values of T. Within the framework of the Frank-
Kamenetskii approximation [5], there is evidently a
value 6,, such that for & > 8, there is nonsteady temper-
ature distribution.

NOTATION

6 = (T — TYE/RTE is the dimensionless temperature;
x = r{(koE/ ART)) exp(—- E/RT))V/? is the dimensionless
coordinate; T = {qkyEt/C,;p,RT?) exp(~E/RT}) is dimen-
sionless time; Ty is the initial temperature of a heated
nonreacting medium, and also the initial temperature
of the reagent for the seif-ignition problem; Tj.;; is
the initial temperature of the reagent in the ignition
problem; R is the universal gas constant; q is the ther-
mal effect of the reaction; r is a dimensional coordin-
ate; ky is a preexponential factor; E is activation en-
ergy; A is the thermal conductivity; p is density; cis
heat capacity; t is time; ® is thermal diffusivity;
subscripts 1 and 2 correspond to the reacting sub-
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stance and the nonreacting medium, respectively; ¢ =
= exp(~fipit); ¥ = exp —Opit/(1 +1); Oypye = (Tp —

~ TinitE)/RTE; n = (Ayp,c,/Ap5¢,) 12 is the relative
thermal activity coefficient for the known reaction me-
dium; a; = —0ipit/(Ay +0n4)); by = by = —=0initAy/ (4, +
+n4y); ag = ~Oinit/(Ay +nA); Ay = (expb,/ay) +nA,;
By = (expby/ad) + By; Ay = (&, + na) ™! [(5/aD) + (0,/2) -
(8 = AD - @,8) +2,40) /6 ~ Oipip — (1 + a8,/ x

x expb,]; a dotabovea symbol indicates differ entiation
withrespectto 7; p; = ((9 +9n +46ipip) (¥ — &) — 9n x
X €0init)/24(1 +n) (v ~ €)Cinits Py = B + n) (v —e) -
= n8inic{6v + 58)) /241 + n)(v ~ &) Oinit; Ty = (kGCt/Ci) X
x pi(Ty =~ Tinit) isdimensionlesstime; & = x/Vo is a
dimensionless coordinate; y = r/r; isthedimensionless
ambient radius; p = Ay/Ay; 0 = wyMy; 1y is thecharac-
teristicdimension of the reactingvolume; i = 0, 1, 2
refertotheplate, cylinder, and sphere, respectively;

6 = (akyErd/NRTY exp(—E/RT) isthe Frank-Kamenet-
skii parameter {5].
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